Anti-Patterns

O que sao e como se livrar deles em Python

Caio Carrara

eu@caiocarrara.com.br

e Desenvolvedor de Software

o Loadsmart
o RedHat

Caio Carrara - ol

o ThoughtWorks

Tech Lead @ Loadsmart e Pythonista
e Tech Lead

Anti-patterns

O que sao anti-patterns

“Um antipadrao é como um padrao,
exceto que ele parece somente
superficialmente como uma solucao,
mas na verdade ndo é.”

- Andrew Koenig

Anti-patterns

An antipattern is a solution that

initially looks like an attractive .” *

road lined with flowers... ' voe*® -
)
L]
.

& ¥ ¥y VM

! 4
a
] .-
- ’ .
PR Y e
X \] +*
= Y
¥
.

...but further on leads you into
a maze filled with monsters

https://martinfowler.com/bliki/AntiPattern.html

O que sao anti-patterns

Anti-patterns podem ser até mais

perigosos do que erros tradicionais

Python Anti-Patterns

Acessar membros internos

(protegidos) de uma classe

Anti-pattern

class Rectangle(object):
def __init_ (self, width, height):
self. width = width
1f. _height = height

r = Rectangle(5, 6)
‘ f protected member

direct access o

print("width: {:d}".format(r. width))

Best practice

If you are absolutely sure that you need to access the protected member from

the outside, do the following:

» Make sure that accessing the member from outside the class does not

cause any inadvertent side effects.
» Refactor it such that it becomes part of the public interface of the class.

Por que aprender anti-patterns?

Anti-Patterns - para saber mais

https://sourcemaking.com/antipatterns

W8 Rk

SOURCE MAKING

W Premium Stuff
s Design Patterns

i AntiPatterns

3 Facebook W Twitter

AntiPatterns

What Is an AntiPattern?

AntiPatterns, like their design pattern counterparts,
implementations within organizations. A higher-lev(
and enables concise description of higher-level con

An AntiPattern is a literary form that describes a con
negative consequences. The AntiPattern may be the
sufficient knowledge or experience in solving a part
wrong context.

https://sourcemaking.com/antipatterns

Python Anti-Patterns

The Little Book of Python Anti-Patterns

Welcome, fellow Pythoneer! This is a small book of Python anti-patterns and worst practices.

Learning about these anti-patterns will help you to avoid them in your own code and make you a better programmer
(hopefully). Each pattern comes with a small description, examples and possible solutions. You can check many of
them for free against your project at QuantifiedCode =.

Python Anti-Patterns

Python Anti-Patterns

Index Of Patterns

Search docs
o CO rretu d e _ Here’s the full index of all anti-patterns in this book.

e Manutenabilidade v Correctness v Correctness

intainabili Accessing a protected member from outside the class
#- Maintainability gap

ol e Assigning a lambda expression to a variable
® Legl b | l | d d d e @ Readability Assigning to built-in function

Bad except clauses order

& Security
[Segu ra n ga Bad first argument given to super()
% Fordormance else | clause on loop without a break statement
* Di exit must accept 3 arguments: type, value, traceback
e Performance 8 Diango

Explicit return in __init__
future import is not the first non-docstring statement

[) Django Implementing Java-style getters and setters

Indentation contains mixed spaces and tabs

Indentation contains tabs

Method could be a function

Method has no argument

Missing argument to super()

Using a mutable default value as an argument

Na excention tvne(s) specified

Corretude

Python Anti-Patterns - Corretude

Anti-pattern

In the code below, the 1ist built-in is overwritten. This makes it impossible, to
use list to define a variable as a list. As this is a very concise example, itis
easy to spot what the problem is. However, if there are hundreds of lines
between the assignmentto 1ist and the assignmentto cars , it might

¢ Atrlbmgao para built-ins become difficult to identify the problem.

list = [1, 2, 3]
cars = list()

(e

Python Anti-Patterns - Corretude

Best practice

Unless you have a very specific reason to use variable names that have the
same name as built-in functions, it is recommended to use a variable name that

P Atribu I§50 para built—i ns does not interfere with built-in function names.

3

numbers = [1, 2, 3]

cars = list()

Python Anti-Patterns - Corretude

Ma ordenacao de except

Anti-pattern

The code below performs a division operation that results in a
ZeroDivisionError . The code contains an except clause for this type of error,
which would be really useful because it pinpoints the exact cause of the
problem. However, the zerobivisionError exception clause is unreachable
because there is a Exception exception clause placed before it. When Python
experiences an exception, it will linearly test each exception clause and
execute the first clause that matches the raised exception. The match does not
need to be identical. So long as the raised exception is a sub class of the
exception listed in the exception clause, then Python will execute that clause
and will skip all other clauses. This defeats the purpose of exception clauses,
which is to identify and handle exceptions with as much precision as possible.

try:
57 O

except Exception as e:
print("Exception")

¥ unreachable
uUnreacnap Le

except ZeroDivisionError as e:
print("ZeroDivisionError")

Python Anti-Patterns - Corretude

Ma ordenacao de except

Best practice

Move sub class exception clause before its ancestor’s clause

The modified code below places the ZzerobivisionError exception clause in
front of the Exception exception clause. Now when the exception is triggered
the zeroDivisionError exception clause will execute, which is much more

optimal because it is more specific.

try:
5/ 0

except ZeroDivisionError as e:
print("ZeroDivisionError")

except Exception as e:
print("Exception")

Python Anti-Patterns - Corretude

Valores mutaveis como padrdao em

argumentos

Anti-pattern

A programmer wrote the append function below under the assumption that the
append function would return a new list every time that the function is called
without the second argument. In reality this is not what happens. The first time
that the function is called, Python creates a persistent list. Every subsequent

call to append appends the value to that original list.

def append(number, number list=[]):
number list.append(number)
print(number_list)
return number list

append(5) # expecting
append(7) pecting: | , [:
append(2) # expecting: [2], actual: [5, 7, 2]

t

¥

Python Anti-Patterns - Corretude

Valores mutaveis como padrdao em

argumentos

Best practice

Use a sentinel value to denote an empty list or dictionary

If, like the programmer who implemented the append function above, you want
the function to return a new, empty list every time that the function is called,
then you can use a sentinel value to represent this use case, and then modify
the body of the function to support this scenario. When the function receives
the sentinel value, it knows that it is supposed to return a new list.

def append(number, number_list=None):

if number list is None:
number_list = []

number list.append(number)

print(number_list)

return number list

append(5) # expecting
append(7) expecting
append(2) # expecting:

1t

Python Anti-Patterns - Corretude

Nenhuma excecao especificada

Anti-pattern

Python Anti-Patterns - Corretude

Best practice

Handle exceptions with Python’s built in exception types =.

def divide(a, b):
result = None

try:
result = a /b
X 1F1 except ZeroDivisionError:
® Nenhuma excegao espeCIflcada print("Type error: division by 0.")
except TypeError:
prlnf(”Type error: division by '{0}'.".format(b))
except Exception as e:

print("Error '{0}' occured. Arguments {1}.".format(e.message
else:

print("No errors")
finally:

if result is None:
result = 0

return result

Manutenibilidade

Python Anti-Patterns - Manutenabilidade

Wildcard imports

Anti-pattern

The following code imports everything from the math built-in Python module.

from math import *

Best practices

Make the import statement more specific

The import statement should be refactored to be more specific about what

functions or variables it is using from the math module. The modified code

below specifies exactly which module member it is using, which happens to be
ceil inthis example.

from math import ceil

Python Anti-Patterns - Manutenabilidade

Abrir arquivos sem context manager

Anti-pattern

The code below does notuse with to open a file. This code depends on the
programmer remembering to manually close the file via close() when
finished. Even if the programmer remembers to call close() the code is still
dangerous, because if an exception occurs before the call to cleose() then

close() will not be called and the memory issues can occur, or the file can be
corrupted.

f = open("file.txt", "r")
content = f.read()
170 -

f.closel()

Python Anti-Patterns - Manutenabilidade

Abrir arquivos sem context manager

Best practice

Use with to open a file

The modified code below is the safest way to open afile. The file class has
some special built-in methods called enter () and exit () which are
automatically called when the file is opened and closed, respectively. Python
guarantees that these special methods are always called, even if an exception
occurs.

with open("file.txt", "r") as f:

content = f.read()

1 /70
R — A A —I—=

Python Anti-Patterns - Manutenabilidade

Retornar mais de um tipo de dado

Anti-pattern

In the code below, the function get secret code() returns a secret code when
the code calling the function provides the correct password. If the password is
incorrect, the function returns none . This leads to hard-to-maintain code,
because the caller will have to check the type of the return value before
proceeding.

def get_secret_code(password):
if password != "bicycle":
return None
else:
return "42"

secret code = get secret code("unicycle")

if secret code is None:
print("Wrong password.")
else:
print("The secret code is {}".format(secret_code))

Python Anti-Patterns - Manutenabilidade

Retornar mais de um tipo de dado

Best practice

Raise an exception when an error is encountered or a
precondition is unsatisfied

When invalid data is provided to a function, a precondition to a function is not
satisfied, or an error occurs during the execution of a function, the function
should not return any data. Instead, the function should raise an exception. In
the modified version of get secret code() shown below, valueError is raised

when an incorrect value is given for the password argument.

def get_secret_code(password):
if password != "bicycle":
raise ValueError
else:
return "42"

try:
secret_code = get_secret_code("unicycle")
print("The secret code is {}".format(secret code))
except ValueError:
print("Wrong password.")

Legibilidade

Python Anti-Patterns - Legibilidade

Pedir permissao ao invés de perdao
(EAFP - easier to ask for forgiveness

than permission)

Anti-pattern

The code below uses an if statement to check if a file exists before
attempting to use the file. This is not the preferred coding style in the Python
community. The community prefers to assume that a file exists and you have
access to it, and to catch any problems as exceptions.

import os

if os.path.exists("file.txt"):
os.unlink("file.txt")

Python Anti-Patterns - Legibilidade

Pedir permissao ao invés de perdao
(EAFP - easier to ask for forgiveness

than permission)

Best practice

Assume the file can be used and catch problems as exceptions

The updated code below is a demonstration of the EAFP coding style, which is
the preferred style in the Python community. Unlike the original code, the
modified code below simply assumes that the needed file exists, and catches
any problems as exceptions. For example, if the file does not exist, the problem
will be caught as an oserror exception.

import os

try:
os.unlink("file.txt")

except OSError:
pass

Python Anti-Patterns - Legibilidade

map() ou filter() ao invés de List

Comprehensions

Anti-pattern

The code below defines a list, and then uses map() to create ¢
value from the first list.

values = [1, 2, 3]
doubles = map(lambda x: x * 2, values)

Best practice

Use list comprehension instead of map()

In the modified code below, the code uses a list comprehensiol
doubled values from the first list. Although this is functionally e:
is generally agreed to be more concise and easier to read.

values = [1, 2, 3]
doubles = [x * 2 for x in values]

Python Anti-Patterns - Legibilidade

N3o usar o método items() de

dicionarios

Anti-pattern

The code below defines a for loop that iterates over a dictionary named d . For
each loop iteration Python automatically assigns the value of key to the name
of the next key in the dictionary. Inside of the for loop the code uses key to
access the value of each key of the dictionary. This is a common way for
iterating over a dictionary, but it is not the preferred way in Python.

d = {"first _name": "Alfred", "last name":"Hitchcock"}

for key in d:
print("{} = {}".format(key, dlkeyl))

Python Anti-Patterns - Legibilidade

N3o usar o método items() de

dicionarios

Best-practice

Use items() to iterate across dictionary

The updated code below demonstrates the Pythonic style for iterating through
a dictionary. When you define two variables ina for loop in conjunction with
acallto items() on adictionary, Python automatically assigns the first
variable as the name of a key in that dictionary, and the second variable as the
corresponding value for that key.

d = {"first name": "Alfred", "last name":"Hitchcock"}

for key,val in d.items():
print("{} = {}".format(key, val))

Seguranca

Python Anti-Patterns - Seguranca

Uso de eval ou exec

Anti-pattern

Program uses exec to execute arbitrary Python code

The sample code below composes a literal string containing Python code and
then passes that string to exec for execution. This is an indirect and confusing

way to program in Python.

s = "print(\"Hello, World!'\")"
exec s

Best practice

Refactor the code to avoid exec

In most scenarios, you can easily refactor the code to avoid the use of exec .

the example below, the use of exec has been removed and replaced by a
function.

def print_hello_world():
print("Hello, World!")

print_hello world()

Anti-patterns sao mais do que
simples erros

Ha diversos tipos em Python

Corretude
Anti- Patterns Manutenibilidade
Legibilidade
O que sao e como se livrar deles Seguranga
em Python Performance

o E importante que saibamos como

identificar e corrigir

Obrigado

Anti-patterns - o que sao e como se livrar deles em Python

Caio Carrara

eu@caiocarrara.com.br
speakerdeck.com/cacarrara

Referéncias

https://martinfowler.com/bliki/AntiPattern.html

https://docs.quantifiedcode.com/python-anti-patterns/

https://sourcemaking.com/antipatterns

https://realpython.com/the-most-diabolical-python-antipattern/

https://martinfowler.com/bliki/AntiPattern.html
https://docs.quantifiedcode.com/python-anti-patterns/
https://sourcemaking.com/antipatterns
https://realpython.com/the-most-diabolical-python-antipattern/

